Host-mediated phosphorylation of type III effector AvrPto promotes Pseudomonas virulence and avirulence in tomato.
نویسندگان
چکیده
The AvrPto protein from Pseudomonas syringae pv tomato is delivered into plant cells by the bacterial type III secretion system, where it either promotes host susceptibility or, in tomato plants expressing the Pto kinase, elicits disease resistance. Using two-dimensional gel electrophoresis, we obtained evidence that AvrPto is phosphorylated when expressed in plant leaves. In vitro phosphorylation of AvrPto by plant extracts occurs independently of Pto and is due to a kinase activity that is conserved in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), and Arabidopsis thaliana. Three Ser residues clustered in the C-terminal 18 amino acids of AvrPto were identified in vitro as putative phosphorylation sites, and one site at S149 was directly confirmed as an in vivo phosphorylation site by mass spectrometry. Substitution of Ala for S149 significantly decreased the ability of AvrPto to enhance disease symptoms and promote growth of P. s. tomato in susceptible tomato leaves. In addition, S149A significantly decreased the avirulence activity of AvrPto in resistant tomato plants. Our observations support a model in which AvrPto has evolved to mimic a substrate of a highly conserved plant kinase to enhance its virulence activity. Furthermore, residues of AvrPto that promote virulence are also monitored by plant defenses.
منابع مشابه
The pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane.
The avrPto gene of Pseudomonas syringae pv tomato triggers race-specific resistance in tomato plants carrying Pto, a resistance gene encoding a protein kinase. When introduced into P. s. tabaci, avrPto triggers resistance in tobacco W38 plants that carry the corresponding R gene. The AvrPto protein is believed to be secreted into host cells through the bacterial type III secretion pathway, wher...
متن کاملPseudomonas syringae Hrp type III secretion system and effector proteins.
Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrp/hrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrp-dependent outer protein (hop) genes encode effector proteins. The hrp/hrc genes of...
متن کاملAvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato.
The plant-intracellular interaction of the avirulence protein AvrPto of Pseudomonas syringae pathovar tomato, the agent of bacterial speck disease, and the corresponding tomato resistance protein Pto triggers responses leading to disease resistance. Pto, a serine/threonine protein kinase, also interacts with a putative downstream kinase, Pto-interactor 1, as well as with members of a family of ...
متن کاملThe Tomato Prf Complex Is a Molecular Trap for Bacterial Effectors Based on Pto Transphosphorylation
The major virulence strategy of phytopathogenic bacteria is to secrete effector proteins into the host cell to target the immune machinery. AvrPto and AvrPtoB are two such effectors from Pseudomonas syringae, which disable an overlapping range of kinases in Arabidopsis and Tomato. Both effectors target surface-localized receptor-kinases to avoid bacterial recognition. In turn, tomato has evolve...
متن کاملDiverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities.
AvrPtoB is a type III effector protein from Pseudomonas syringae pv. tomato that physically interacts with the tomato Pto kinase and, depending on the host genotype, either elicits or suppresses programmed cell death associated with plant immunity. We reported previously that avrPtoB-related sequences are present in diverse gram-negative phytopathogenic bacteria. Here we describe characterizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2006